
Developing Energy-Aware Strategies for the Blackfin Processor

Steven VanderSanden, David R. Kaeli Giuseppe Olivadoti, Richard Gentile
Dept. Electrical and Computer Engineering Analog Devices, Inc.

Northeastern University 1 Technology Way
Boston, MA 02115 USA Norwood, MA 02062 USA

{svanders,kaeli}@ece.neu.edu {giuseppe.olivadoti,richard.gentile}@analog.com

Abstract

Energy usage is becoming an increasingly important design constraint for all computer systems. This
issue is particularly critical in battery powered, embedded designs. Although many embedded processors
have developed sophisticated power management schemes, few have produced an accurate, easy-to-use energy
estimation framework. In this presentation we will describe the development of an instruction-level energy
modeling framework for the Analog Devices Blackfin family of processors. Using this model, we are able to
accurately estimate the energy consumed when running this code. While our main goal is to demonstrate
that we can perform accurate energy estimation, we also plan to develop a framework that is fully integrated
with compilation in order to produce more energy-efficient binaries. In this abstract we briefly describe our
methodology and show data that illustrate some of the difficulties encountered when attempting to statically
model energy.

1 Introduction and Methodology
The design specifications of many embedded systems include strict energy budgets. In order to reduce the time

to market (and still meet these constraints), a designer must be able to accurately predict the energy usage for
the system. The goal of our work is to develop an energy estimation scheme for the Analog Devices Blackfin 533
(ADSP-BF533). Two of the more common modeling options employed for energy estimation are architectural-
level and instruction-level estimation. Architectural-level tools, which include th Wattch [1] and SimplePower [2]
power modeling frameworks, compute energy based on functional unit usage considering transitions of individual
signals. Instruction-level tools calculate the energy budget by characterizing individual instructions and inter-
instruction energy usage. Instruction-level tools can only be used when the microarchitecture of the underlying
processor is simple (e.g., on embedded cores).
We have chosen to use instruction-level energy estimation for our work. This form of estimation was employed

previously by Tiwari et al. at Princeton to develop models for a number of embedded processors [3, 4]. They
developed accurate models for the Intel 486DX2 and the Fujitsu SPARClite. We are following a similar approach,
but extending it to consider further power aspects of the microarchitecture and applying these extension to the
ADSP-BF533.
As mentioned previously, an instruction-level estimation is constructed by characterizing the energy usage

of individual instructions (i.e., base energy cost) and then computing the overhead that is incurred when two
different instructions are executed consecutively (inter-instruction effects). The total energy for a program is
computed by summing the base energy costs of the individual instructions and the total inter-instruction effects.
To capture the base energy cost for an instruction, we place several instances of that instruction in a loop,

run the loop, and measure the average current produced. The base energy cost is directly proportional to
this measured current multiplied by the number of cycles required for the execution of one instance of the
instruction. Inter-instruction effects are those effects that cannot be captured in the base energy cost. Inter-
instruction effects can be characterized as effects related to resource constraints and delays (e.g., pipeline stalls,
cache misses, write buffer stalls, etc.) and circuit state overhead (the added cost of switching within the circuit
when executing two different instructions in succesion). The circuit state overhead can be measured by placing
many repetitions of a pair of instructions in a loop and measuring the average current. The inter-instruction
overhead can be calculated by computing the difference between the measured current and the average of the
two base costs of the instructions in the loop.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Developing Energy-Aware Strategies for the Blackfin Processor

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Dept. Electrical and Computer Engineering Northeastern University
Boston, MA 02115 USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance Embedded
Computing (HPEC) Workshops, 28-30 September 2004. , The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

24

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Instruction r7 = r3 + r4;
r3 Value r4 Value Current(mA)
0x1 0x1 52.20

0x80000000 0x8000000 52.31
0x90B 0x371F 52.82

0xCCCCCCCC 0xCCCCCCCC 53.27
0x33333333 0x33333333 53.33
0xFFFF 0xFFFF 53.44

0x7FFFFFFF 0x7FFFFFFF 54.34
0xFFFFFFFF 0xFFFFFFFF 54.34

Table 1: Impact of data operand values

Instruction Initial Values Current (mA)
r6 = -r3; r3 = 0x90B 51.98
r3 = -r3; r3 = 0x90B 60.53

Table 2: Impact of toggling register values

To estimate the total energy consumed by various programs, the base energy cost must be measure for each
instrucion in the instruction set and the circuit state overhead for a large number of instruction pairs needs to
be computed. The estimation framework will use a table lookup strategy to sum the base energy costs and the
inter-instruction effects of a program to estimate the energy usage. To reduce the amount of time to produce
this tables, we can identify similaries in energy costs of similar instructions.
The goal of his work is to produce an instruction-level energy model for the ADSP-BF533 and to use that

model as a base for an energy estimation framework. In addition to these goals, we are also trying to improve
the methods currently used for energy profiling. The remainder of this paper will discuss some of the issues
encountered during energy profiling and we will also provide an example result used to verify our approach.

2 Results
In this section we will show some examples of the measurements that need to be obtained to perform in-

struction level modeling. In addition collecting a large number of base energy cost measurements and circuit
state overheads, we also looked at the role that data values play in our ability to accurately collect this data.
In Table 1, we show the effects of using different data operand values for an add instruction. As we can see,
using different data values can have a significant impact on the average current and therefore the overall energy
consumed (4.0% in this example). One interesting observation is that since many values in a computer are typ-
ically close to zero, two-complement can be an inefficient representation when considering energy consumptions
(due to the large number of bit flips when a value changes sign).
In addition to investigating the impact of data operand values, we also looked the the impact output operands

and the cost of toggling destination register values. In this example, the input data values were kept constant,
but the destination register was varied. In Table 2 we show the results of a simple negate instruction. As we
can see, large changes in current occur for when the destination register value is toggled. We can see clearly
how dependent current measurements are on the number bit flips performed in a cycle.
As an example of the fidelity of our approach, we provide a small example program. We have both utilized our

profile data to produce an estimated energy budget for this snipit, as well as have measured the current drawn.
The code of the program is shown in Table 3. We have run the program on the ADSP-BF533 and measured
the average current during program execution. The energy estimation using our approach was computed to be
3.2 nJ, while the average energy on the BF533 was measured to be 3.3 nJ. This is only a 3% difference.
To date, our results have clearly demonstrated that we can utilize this approach and obtain accurate mea-

surements. In the presentation of this work, we will discuss some further power issues related to leakage energy
and temperature dependence. We will also discuss some of the difficulties of estimating energy in the memory
hierarchy.

r1 *= r2;
r2 = [i1++];

r0 = r0 + r1 (ns);
r1 = [p2++];

nop;

Table 3: Simple program to validate our approach

References
[1] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for Architectural-Level Power Analysis

and Optimizations,” Proceedings of 27th International Symposium on Computer Architecture, May 2000.

[2] W. Ye, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, “The Design and Use of SimplePower: A Cycle-Accurate
Energy Estimation Tool,” In the Proceedings of the Design Automation Conference, June 2000.

[3] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded Software: A First Step Toward Software
Power Minimization,” IEEE Transactions on VLSI Systems, pp. 437-445, Dec. 1994.

[4] M. T. Chien, V. Tiwari, S. Malik, and M. Fujita, “Power Analysis and Minimization Techniques for Em-
bedded DSP Software,” IEEE Transactions on VLSI Systems, pp. 123-135, Mar. 1997.

Introduction and Motivation

• Power consumption/density has become a critical issue
in high performance processor design

• This issue is even more important on battery-powered
embedded cores and systems

• The embedded processing market is growing at a very
fast pace

• Application engineers must be able to accurately
predict the energy usage for the core and the system
when running their applications

• This project is targeted to improve the power analysis
capabilities of the ADI Blackfin family of processors and
systems

ADI Blackfin Family of Processors
Wireless Connectivity
• Bluetooth
• GSM/GPRS
• 3G/EDGE

Digital Imaging
CODECs
• MPEG
• JPEG
• H.263
• H.264

Wired
Connectivity
• USB
• TCP/IP
• Ethernet

Human Interface
• Speech Recognition
• Text to Speech
• Handwriting
• Audio

Operating
Systems/RTOS

Designed for High
Level Language

Image
ProcessingMicroprocessing

Digital
Signal

Processing

System Control/
Applications Software

Blackfin Family

• Blackfin Core
– High-performance
– 16-bit
– Dual-MAC embedded processors
– Equally adept at DSP, control processing, and image processing

• Processor Features
– 400-756Mhz core capable of to 1.512 GMACs
– 8, 16 and 32-bit fixed-point math support
– Hierarchical reconfigurable memory systems
– Dual core versions
– High speed peripherals and DMA controller

• Parallel Peripheral Interface (PPI) : dedicated 0-75Mhz parallel data port
• SPORTS, SPI, External Port, SDRAM, UART (IrDA), etc

– Control processing features
• Very high compiled code density
• Supervisor and user modes/MMU, watchdog timer, real-time clock

How does the Blackfin Processor help?

•Speeds time-to-market and facilitates rapid product derivatives
–High-performance software target
–Software-centric product development

•Lowers BOM and R&D costs
–Eliminates redundant DSP, MCU and hardware accelerator blocks
–Software reuse model enhances R&D productivity with each sequential
product generation

–Processors begin at $5 (in quantities of 10K)
•Reduces technical, market and schedule risks

–Software support for multiple formats and evolving standards
–Development and debug within software—not ASIC—cycle times
–Signal processing capabilities along with a familiar RISC programming
model

•Enables end-product feature differentiation
–2X to 4X performance advantage per dollar and per milliwatt

Blackfin Dynamic Power Management Overview
• Wide range of core frequencies supported (1.25M->756 MHz)

–Programmable Core and System Clocks for maximum power savings

• Wide range of core operating voltages supported (0.8 -> 1.4 V)
–Programmable internal voltage levels based on core frequency

• Full complement of power savings modes
–Full-on, Active, Sleep, Deep-sleep and Hibernate

• “Voltage and frequency tuning” for minimum power
–Ensures consistent, low power consumption across process

• Dual-core processor can be used for power savings
–Lower voltage levels and lower frequencies provide additional power

savings options with equivalent performance levels

Power Dissipation

• Therefore
– E ∝ I * N

• E = P * T
• E – energy consumed
• T – execution time

• T = N * 1/f
• N – number of cycles
• f – clock frequency

• Important to distinguish between power and energy
• P = I * Vcc

• P – average power
• I – average current
• Vcc – supply voltage

Power vs. Energy

• Dynamic power dissipation
– Due to switching activity

• Static power dissipation
– Due to leakage current – major paths are:

• Subthreshold leakage
• Exponentially dependent on Vdd, Vth, temperature

• Gate leakage
• Exponentially dependent on Vdd, Tox

Instruction-level Power Estimation
Strategy

• Develop an instruction-level energy model for the Blackfin
processor (BF533 @ 1.2 V and 270 MHz, though our approach is re-
targetable)
– Core voltage operation between 0.8V and 1.4V from 0 to 756 MHz

• Leverage past work on instruction-level power profiling for
embedded cores (Tiwari @ Princeton)
– Instruction-level estimation can be effective on cores with simple pipelines

• We then build energy estimates, working with individual basic
blocks, and then weight blocks based on the dynamic call graph
traversal during program execution

Instruction-level Power Estimation
Strategy

• We consider variability due a configurable memory
hierarchy

• We consider the impact of operand values and operand
types on energy

• We consider environmental effects on measurements

• We will combine our instruction-level model with
VisualDSP++ to provide power/performance framework

Instruction-Level Energy Modeling

Total Energy = Base Energy Cost + Inter-Instruction Effects

• Base Energy Cost
– The energy cost to execute an individual instruction

• Capture Base Energy Costs
– Construct loops containing several instances of the same instruction

(now automated)
– Measure the average current drawn while executing this loop
– The base energy cost is directly proportional to this current, multiplied

by the number of cycles needed to complete each instance of the
instruction

Instruction-Level Energy Modeling
Total Energy = Base Energy Cost + Inter-Instruction Effects

• Inter-Instruction Effects
– Energy contributions that are not considered in the base energy cost
– Circuit state overhead

• Added cost due to switching activity within the circuit when executing
two different instructions in succession

• Effect measured using a pair of different instructions in a loop and
capturing the average current

– Effects of resource constraints and delays
• Common events - pipeline stalls, cache misses, write buffer stalls
• These events increase the number of cycles required to complete an

instruction
• The average power per cycle often decreases, but the overall energy still

increases due to the higher cycle count

74

75

76

77

78

79

80

81

82

83

84

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Minutes

C
ur

re
nt

 (m
A

)

Measurement Environment
Warm-up

Impact of Operand Values

• Comments:
– Input operand values have a significant impact on average current (range of 3.9

mA)
– Power is dependent upon the number of bit flips performed in a cycle
– Large variations in current are observed with changing destination register

values
– Presents challenges to our measurement assumptions

Instruction: r7 = r3 + r4;
r3 Value

0x1

0x3333 0x3333 94.7

0xFFFF

0x33333333

0xFFFFFFFF

r4 Value Current (mA)
0x1 93.8

0xFFFF 95.6

0x33333333 95.6

0xFFFFFFFF 97.5

r3 = 0x90B

r3 = 0x90B

Initial Values

108.5r3 = -r3;

94.1r6 = -r3;

Current (mA)Instruction

Instruction Selection
Add

top_loop:

r7 = r3 + r4;

r7 = r3 + r4;

r7 = r3 + r4;

…

jump top_loop;

Nop
top_loop:

nop;

nop;

nop;

…

jump top_loop;

Combination
top_loop:

r7 = r3 + r4;

nop;

r7 = r3 + r4;

nop;

…

jump top_loop;

• Average current
– Add: 94.7 mA
– NOP: 90.9 mA
– Combination: 108.7 mA

• Comments:
– Circuit state overhead is significant (i.e., NOPs are not free)
– Decode overhead is a major contributor to power consumption

Memory Configuration

• Investigated current dissipation of L1 memory
configured as SRAM vs. cache

• Cache overhead for Load instruction
– Instruction: 3.9 mA
– Data: 11.8 mA

• Comments:
– Cache maintenance operations increase current dissipation
– Data cache consumes more current due to core layout and

multi-port design

Example Program: Cache Disabled
Measured

Average current: 116.4 mA

Number of Cycles: 9

E = 4.7 nJ

Estimated

E = 4.4 nJ

Percent Difference

5%

r1 = [i0];
r7 *= r1;
r6 = r1 + r6 (ns);
r5 = r1 +|- r6;
[i1] = r7;
[i2] = r6;
[i3] = r5;

r1 = [i0];
r7 *= r1;
r6 = r1 + r6 (ns) || [i1] = r7;
r5 = r1 +|- r6 || [i2] = r6;
[i3] = r5;

Measured

Average current: 127.5 mA

Number of Cycles: 7

E = 4.0 nJ

Estimated

E = 3.8 nJ

Percent Difference

5%

Example Program: Parallel Instructions

Example Program: Multiple
Basic Blocks

Measured

Average current: 114.2 mA

Number of Cycles: 20

E = 10.2 nJ

Estimated

E = 9.9 nJ

Percent Difference

2%

r1.h = 0x5555;
r1.l = 0xAAAA;
r2.h = 0x3333;
r2.l = 0xCCCC;
jump label1;

label1:
r7.h = r1.h*r2.h, r7.l = r1.l*r2.l;
r6 = r1 & r2;
r5 = ashift r1 by r2.l (s);
jump label2;

label2:
[i1++] = r7;
[i1++] = r6;
[i1++] = r5;

Summary

• Developed a retargetable method to produce an
instruction-level energy model

• Constructed an instruction-level energy model for the
Blackfin processor and used it to estimate programs
with less than 6% error

• Developed a set of automated tools to drive test code
generation and current measurements

• Studied the energy effects of the memory hierarchy,
changes in operand values, and environmental factors

Developing Power-Aware
Strategies for the Blackfin

Processor
Steven VanderSanden Giuseppe Olivadoti

David Kaeli Richard Gentile
Northeastern University Analog Devices

Boston, MA Norwood, MA

svanders@ece.neu.edu giuseppe.olivadoti@analog.com
kaeli@ece.neu.edu richard.gentile@analog.com

The Need for Accurate
Power Estimation

• Power management is particularly critical for portable
embedded systems

• Power estimates will drive future core design
decisions and impact battery design

• Present power estimation techniques utilize abstract
architectural models
– Good for predicting relative performance, but lack precision
– Difficult to adapt across different core models

• Our work develops an instruction-level model
– Profiles power/energy instruction-by-instruction
– Utilizes statistical methods for estimating full program power
– Methodology is portable to any embedded processor design

• This project is targeted to improve the power analysis
capabilities of the ADI Blackfin family of processors
and systems

Blackfin Processor

756 MHz
Blackfin Processor Core (s)

SDRAM

FLASH/SRAM

Interfaces

Watchdog

JTAG

System Peripherals

L1
Instruction
SRAM/
Cache

L1
Data
SRAM/
CACHE

Data
Scratch-
pad

DMA

SPI

UART

Timers

Standard Peripherals

PLL

Dynamic
Power

Management
SPORTs

Programmable
Flags

Memory

L2 Memory

USB Device

Video/
High-speed

A/D

PCI

Additional
Peripherals

• Built around Micro Signal Architecture, developed jointly with Intel
Corp.
• Integrates DSP with features more typically found in an MCU
• Full suite of power management capabilities

Real Time Clock

A DSP with a RISC instruction set and an MMU, an
event controller and a wide range of peripherals

Our Approach

• Instruction-level power modeling
– Computes energy budget by characterizing single instruction and inter-

instruction power usage, combined with instruction execution time
– Total energy = base energy cost + inter-instruction effects

• Profiling is used to construct a power/energy table for both base costs
and inter-instruction effects

• We consider variability introduced by:
– Operand types and operand values
– Memory system configuration
– Instruction selection
– Measurement environment

• We then build energy estimates, working with individual basic blocks,
and weight blocks based on the dynamic call graph traversal during
program execution

• We are able to accurately estimate full program behavior (including
memory access) within 6% of measured values

	vandersanden_precis.pdf
	Developing Power-Aware Strategies for the Blackfin Processor
	The Need for Accurate Power Estimation
	Blackfin Processor
	Our Approach

	Precis:
	Abstract:
	Agenda:
	Poster:

